Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(31): e2303285, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587020

RESUMO

The extensive and improper use of antibiotics has led to a dramatic increase in the frequency of antibiotic resistance among human pathogens, complicating infectious disease treatments. In this work, a method for rapid antimicrobial susceptibility testing (AST) is presented using microstructured silicon diffraction gratings integrated into prototype devices, which enhance bacteria-surface interactions and promote bacterial colonization. The silicon microstructures act also as optical sensors for monitoring bacterial growth upon exposure to antibiotics in a real-time and label-free manner via intensity-based phase-shift reflectometric interference spectroscopic measurements (iPRISM). Rapid AST using clinical isolates of Escherichia coli (E. coli) from urine is established and the assay is applied directly on unprocessed urine samples from urinary tract infection patients. When coupled with a machine learning algorithm trained on clinical samples, the iPRISM AST is able to predict the resistance or susceptibility of a new clinical sample with an Area Under the Receiver Operating Characteristic curve (AUC) of ∼ 0.85 in 1 h, and AUC > 0.9 in 90 min, when compared to state-of-the-art automated AST methods used in the clinic while being an order of magnitude faster.


Assuntos
Escherichia coli , Silício , Humanos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Testes Imediatos
2.
Lab Chip ; 22(23): 4511-4520, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35960181

RESUMO

We leverage electroosmotic-flow generation in porous media in combination with a hydrophobic air gap to create a controllable valve capable of operating in either finite dosing or continuous flow mode, enabling the implementation of multi-step assays on paper-based devices. The hydrophobic air gap between two paper pads creates a barrier keeping the valve nominally closed. Electroosmotic actuation, implemented using a pair of electrodes under the upstream pad, generates sufficient pressure to overcome the barrier and connect the two pads. We present a model describing the flow and governing parameters, including the electric potentials required to open and close the valve and the threshold potential for switching between the modes of operation. We construct the air gap using a hierarchical superhydrophobic surface and study the stability of the closed valve under strenuous conditions and find good agreement between our model and experimental results, as well as stable working conditions for practical applications. We present a straightforward design for a compact and automated device based on paper pads placed on top of printed circuit boards (PCB), equipped with heating and actuation electrodes and additional power and logic capabilities. Finally, we demonstrate the use of the device for amplification of SARS-CoV-2 sequences directly from raw saliva samples, using a loop-mediated isothermal amplification (LAMP) protocol requiring sample lysis followed by enzymatic deactivation and delivery to multiple amplification sites. Since PCB costs scale favorably with mass-production, we believe that this approach could lead to a low-cost diagnostic device that offers the sensitivity of amplification methods.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Diagnóstico Molecular/métodos , Eletro-Osmose
3.
Anal Chem ; 94(30): 10584-10588, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35861417

RESUMO

We present a microfluidic device for selective separation and extraction of molecules based on their diffusivity. The separation relies on electroosmotically driven bidirectional flows in which high-diffusivity species experience a net-zero velocity and lower diffusivity species are advected to a collection reservoir. The device can operate continuously and is suitable for processing low sample volumes. Using several model systems, we show that the extraction efficiency of the system is maintained at more than 90% over tens of minutes with a purity of more than 99%. We demonstrate the applicability of the device to the extraction of genomic DNA from short DNA fragments.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , DNA
4.
Langmuir ; 36(20): 5517-5523, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32337996

RESUMO

Wetting transition on superhydrophobic surfaces is commonly described as an abrupt jump between two stable states-either from Cassie to Wenzel for nonhierarchical surfaces or from Cassie to nano-Cassie on hierarchical surfaces. We here experimentally study the electrowetting of hierarchical superhydrophobic surfaces composed of multiple length scales by imaging the light reflections from the gas-liquid interface. We present the existence of a continuous set of intermediate states of wetting through which the gas-liquid interface transitions under a continuously increasing external forcing. This transition is partially reversible and is limited only by localized Cassie to Wenzel transitions at nanodefects in the structure. In addition, we show that even a surface containing many localized wetted regions can still exhibit extremely low contact angle hysteresis, thus remaining useful for many heat transfer and self-cleaning applications. Expanding the classical definition of the Cassie state in the context of hierarchical surfaces, from a single state to a continuum of metastable states ranging from the centimeter to the nanometer scale, is important for a better description of the slip properties of superhydrophobic surfaces and provides new considerations for their effective design.

5.
Small ; 16(5): e1904268, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31885215

RESUMO

The theoretical analysis and experimental demonstration of a new concept are presented for a non-contact scanning probe, in which transport of fluid and molecules is controlled by electric fields. The electrokinetic scanning probe (ESP) enables local chemical and biochemical interactions with surfaces in liquid environments. The physical mechanism and design criteria for such a probe are presented, and its compatibility with a wide range of processing solutions and pH values are demonstrated. The applicability of the probe is shown for surface patterning in conjunction with localized heating and 250-fold analyte stacking.


Assuntos
Técnicas de Química Analítica , Técnicas de Química Analítica/instrumentação , Técnicas Eletroquímicas/instrumentação , Concentração de Íons de Hidrogênio , Soluções/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...